Rapid identification of dihydropyrimidine dehydrogenase deficiency by using a novel 2-13C-uracil breath test.
نویسندگان
چکیده
PURPOSE Dihydropyrimidine dehydrogenase (DPD)-deficient cancer patients have been shown to develop severe toxicity after administration of 5-fluorouracil. Routine determination of DPD activity is limited by time-consuming and labor-intensive methods. The purpose of this study was to develop a simple and rapid 2-(13)C-uracil breath test, which could be applied in most clinical settings to detect DPD-deficient cancer patients. EXPERIMENTAL DESIGN Fifty-eight individuals (50 "normal," 7 partially, and 1 profoundly DPD-deficient) ingested an aqueous solution of 2-(13)C-uracil (6 mg/kg). (13)CO(2) levels were determined in exhaled breath at various time intervals up to 180 min using IR spectroscopy (UBiT-IR(300)). DPD enzyme activity and DPYD genotype were determined by radioassay and denaturing high-performance liquid chromatography, respectively. RESULTS The mean (+/-SE) C(max), T(max), delta over baseline values at 50 min (DOB(50)) and cumulative percentage of (13)C dose recovered (PDR) for normal, partially, and profoundly DPD-deficient individuals were 186.4 +/- 3.9, 117.1 +/- 9.8, and 3.6 DOB; 52 +/- 2, 100 +/- 18.4, and 120 min; 174.1 +/- 4.6, 89.6 +/- 11.6, and 0.9 DOB(50); and 53.8 +/- 1.0, 36.9 +/- 2.4, and <1 PDR, respectively. The differences between the normal and DPD-deficient individuals were highly significant (all Ps <0.001). CONCLUSIONS We demonstrated statistically significant differences in the 2-(13)C-uracil breath test indices (C(max), T(max), DOB(50), and PDR) among healthy and DPD-deficient individuals. These data suggest that a single time-point determination (50 min) could rapidly identify DPD-deficient individuals with a less costly and time-consuming method that is applicable for most hospitals or physicians' offices.
منابع مشابه
Rapid Identification of Dihydropyrimidine Dehydrogenase Deficiency by Using a Novel 2-C-Uracil Breath Test
Purpose: Dihydropyrimidine dehydrogenase (DPD)-deficient cancer patients have been shown to develop severe toxicity after administration of 5-fluorouracil. Routine determination of DPD activity is limited by time-consuming and labor-intensive methods. The purpose of this study was to develop a simple and rapid 2-C-uracil breath test, which could be applied in most clinical settings to detect DP...
متن کاملThe Uracil Breath Test in theAssessment of Dihydropyrimidine Dehydrogenase Activity: Pharmacokinetic Relationship between Expired
Purpose:Dihydropyrimidine dehydrogenase (DPD) deficiency is critical in the predisposition to 5-fluorouracil dose-related toxicity. We recently characterized the phenotypic [2-C]uracil breath test (UraBT) with 96% specificity and100% sensitivity for identification of DPD deficiency. In the present study, we characterize the relationships among UraBT-associated breath CO2 metabolite formation, p...
متن کاملDihydropyrimidine dehydrogenase deficiency (DPD) in GI malignancies: Experience of 4 years.
2056 Background: 5-Fluorouracil (5-FU) is an integral part of treatment of GI malignancies. While normal DPD enzyme activity is rate limiting in 5-FU catabolism, its deficiency could increase concentrations of bioavailable 5-FU anabolic products leading to 5-FU related toxicity syndrome. With DPD deficiency, 5-FU is discontinued. Data regarding safety of capecitabine (CAP) in this population is...
متن کاملEffect of vitamin B2 deficiency on rat liver dihydropyrimidine dehydrogenase activity.
Effect of vitamin B2 deficiency on rat liver dihydropyrimidine dehydrogenase was investigated. It was found that the purified enzyme contains 2 mol flavin per molecule, which consists of equal proportions of flavin-adenine dinucleotide (FAD) and riboflavin 5'-phosphate (FMN). When rats were fed on a vitamin B2-deficient diet for 5 weeks, dihydropyrimidine dehydrogenase activity in the liver was...
متن کاملIncreased prevalence of dihydropyrimidine dehydrogenase deficiency in African-Americans compared with Caucasians.
PURPOSE African-American patients with colorectal cancer were observed to have increased 5-fluorouracil (5-FU)-associated toxicity (leukopenia and anemia) and decreased overall survival compared with Caucasian patients. One potential source for this disparity may be differences in 5-FU metabolism. Dihydropyrimidine dehydrogenase (DPD), the initial and rate-limiting enzyme of 5-FU catabolism, ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 10 8 شماره
صفحات -
تاریخ انتشار 2004